Clustering Algorithms for Non-Profiled Single-Execution Attacks on Exponentiations

 $\frac{\text{Johann Heyszl}^1}{\text{Fabrizio De Santis}^{2,4}} \quad \begin{array}{c} \text{Stefan Mangard}^{3,4} \\ \text{Georg Sigl}^2 \end{array}$

¹Fraunhofer Research Institution AISEC, Munich, Germany ²Technische Universität München, Munich, Germany ³Graz University of Technology, Graz, Austria ⁴Infineon Technologies AG, Munich, Germany

Motivation

- Single execution side-channel attacks on exponentiations
- Previous ones require profiling or manual tuning or use ad-hoc algorithms
- We describe how to use cluster classification algorithms instead

Reminder: Exponentiation Algorithms

- Exponentiations in asymm. crypto
 - Modular exponentiations in RSA
 - Elliptic curve scalar multiplications in ECC
- Popular algorithms:
 - Square-and-multiply-always (RSA) / double-and-add-always (ECC)
 - Montgomery ladder (RSA, ECC)
- Key features of exponentiation algorithms
 - Secret exponent processed bit/digit-wise in loop
 - Mostly timing-safe, hence, operation sequence uniform (against SPA)

Single-Execution Leakage

- Side-Channel Attackers only have single observations to exploit
 - Due to ephemeral exponent or e.g. blinding countermeasure

- Side-Channel Attackers only have single observations to exploit
 - Due to ephemeral exponent or e.g. blinding countermeasure
- Certain amount of information about exponent bits (binary alg.) is still leaking in most cases → single-execution leakage (adress-bit-related, localized leakage, ...

Clustering | J.Heyszl et al. | | 4

© Fraunhofer

Exploiting Single-Execution Leakage

- Cut recorded exponentiation trace into samples
- Each corresponds to different secret bit (binary exp. alg.)
- Attack basically means to find correct partition = Classification

Exploiting Single-Execution Leakage Previously and Strongly Related

Template attacks

Require profiling (difficult, think of e.g. blinding)

Cross-correlation-based attacks

- Requires manually tuned thresholds
- Correlation disregards information (absolute values)
- Some are based on heuristic power models (corr. coeff. makes more sense then)
- Walter's Big Mac attack from 2001
 - Ad hoc engineered algorithm

Use algorithms from the established research-field of 'Pattern classification'

Those are already heavily researched in other applications

• We propose to use **unsupervised cluster classification algorithms**

Exploit single execution leakage of exponentiation algorithms

Our Proposal

Using Unsupervised Clustering for an Attack

 Reminder: In profiled template attack, cut-out samples are classified by matching to templates

binary exponentiation loop iterations How how how and how we

 Clustering algorithms classify the cut-out samples automatically without profiling or manual tuning

Unknown if 0 or 1 bits, but easy try-out

Success depends on available leakage of course

Unsupervised Cluster Classification Algorithms

- Unsupervised means no training data, no profiling
- Input a set of multi-dimensional samples/vectors e.g. cut-out trace-parts
- Algorithm estimates distributions
- Define free parameters of distribution (e.g. *two* cluster centers)
- Optimal algorithm depends on the distribution model (shape of clusters)

Unsupervised Cluster Classification Algorithms K-Means

- Example algorithm:
 k-means algorithm for unsupervised clustering
 - Finds *k* cluster centers and corresponding classification
 - Distribution assumption shape of clusters:
 - **k** equal Gaussian distributions
 - Independent values in samples (dimensions are independent)
 - Variance equal within clusters

Unsupervised Cluster Classification Algorithms K-Means

- Input: Samples (cut-out trace parts) and number of clusters k
- Starts by choosing *k* random samples as initial cluster means
- Then iteratively:
 - Compute *Euclidean distance* from all samples to current *k* means
 - Classification: Assign all samples to closest mean $\rightarrow k$ classes
 - **Compute new means** of *k* classes from current classification
 - Repeat until no change in class assignment
- **Output:** *k* cluster means and classification
- Repeat with different starting points to prevent local maxima (best outcome based on sum-of-squared-error criterion selected)

- Laboratory setup (FPGA-based , trigger output, synchronized clock) (Definitely not real world ;)
- Same setup as in our CT-RSA'12 paper: Template attacks exploiting location-based leakage

Practical Evaluation FPGA DUT

- Straight-forward FPGA-based digital HW implementation:
 - Elliptic curve scalar multiplication ($Q = d \cdot P$) with affine input/output
 - López and Dahab Montgomery ladder 'exponentiation' algorithm, binary field GF(2¹⁶³), NIST parameters

Location-Based Leakage

- High-resolution inductive near-field probe (100 μm resolution)
- Probe is closer to one of two registers
- Register access depends on current secret bit in loop

Practical Evaluation Measurement Positions

- FPGA die surface
- Multiple measurement positions in geometric regular array (no profiling to find locations)

Clustering | J.Heyszl et al. | | 15

© Fraunhofer

Practical Evaluation Trace Example

Reminder: Cutting a trace into samples

Practical Evaluation Trace Example

Reminder: Cutting a trace into samples

• Example from one measurement - 4 samples

Result from One Position

- Single measurement after clustering
 - Returns 2 sample means and corresp. classification

Result from One Position

- Single measurement after clustering
 - Returns 2 sample means and corresp. classification
 - For visualization:
 - Regard the samples/means as vectors in multi-dim. space
 - Draw line through to means
 - 1-D projection of samples on this line

Result from One Position

- Single measurement after clustering
 - Returns 2 sample means and corresp. classification
 - For visualization:
 - Regard the samples/means as vectors in multi-dim. space
 - Draw line through to means
 - 1-D projection of samples on this line

How to Cope with Errors?

 Clustering algorithms allow to derive posterior probabilities for each sample describing likelihood of correct classification (basically low if close to separation plane)

How to Cope with Errors?

 Clustering algorithms allow to derive posterior probabilities for each sample describing likelihood of correct classification (basically low if close to separation plane)

- Attacker may use this in a brute-force strategy:
 - Trial bits with low post. probabilities first
 - Repeat and increase number of trialed bits until correct exponent found

Practical Evaluation Results for All Positions

Estimate remaining brute-force complexity after clustering attack

Practical Evaluation Results for All Positions

- Estimate remaining brute-force complexity **after** clustering attack
- All individual measurement positions:

 In 2 out of 9 cases, brute-force complexity is clearly feasible for attackers (only 2²² and 2³⁷ trials)

Practical Evaluation Combining Simultaneous Measurements

- What if exploited leakage is insufficient?
- Repeating measurements is impossible because exponent changes
- Cluster analysis provides straight-forward possibility to combine (simultaneous) measurements:
 - Simply concatenate cut-out samples

Improvement Through Combination

Due to lack of mult. probes, meas. are repeated with const. inputs

Clustering | J.Heyszl et al. | | 21

© Fraunhofer

Improvement Through Combination

- Due to lack of mult. probes, meas. are repeated with const. inputs
- One measurement (after clustering, 1-D projection): Many Errors

Improvement Through Combination

- Due to lack of mult. probes, meas. are repeated with const. inputs
- One measurement (after clustering, 1-D projection): Many Errors

All measurements (after clustering, 1-D projection): No Errors

Countermeasures

- Exponent blinding or coordinate randomization do not help
- Reduce SNR of single-execution leakage as far as possible
- Address sources of specific single-execution leakage.
 E.g. Reduce location-based leakage using interleaved placement

Conclusion

Non-profiled attack against exponentiations

- Well established clustering algorithms
- No manual tuning
- Can be generalized to any single-/multi-variate single execution leakage of exponentiation algorithms
- Combination of measurements can improve attack
 - \rightarrow no need to find best positions
- In our opinion, this should make cross correlation-based single-execution attacks obsolete
- Clustering may also be interesting e.g. for SCA collision attacks

Thank You

Clustering | J.Heyszl et al. | | 24

© Fraunhofer

Back-Up K-Means

- Example: Graphical representation of 2-dimensional samples (not my data)
 - In this example: samples cluster around two means/centroids
 - This corresponds to binary exponentiation case
 - The segmentation can be found through unsupervised algorithms

Figure: Source: http://www.mathworks.de/de/help/stats/kmeans.html

Back-Up ECC Implementation

- Elliptic curve scalar multiplication ($Q = d \cdot P$)
- Binary field GF(2¹⁶³), NIST Curve B-163 parameters
- López and Dahab Montgomery ladder 'exponentiation' algorithm
- Affine *x* and *y*-coordinates as input and output
- Fulfills requirements for successfull attack
 - Bitwise processing of **163** bit scalar
 - Uniform operation sequence for each bit
 - Register usage depends on bits

Back-Up Locations with High Leakage vs. High Amplitudes

176 μV 135 μV 94 μV 47.7 μV 31.8 μV 15.9 μV

r258 μV

217 µV

Clustering | J.Heyszl et al. | | 27

© Fraunhofer